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- 
Abstract: 

There a r e  two general approaches to control acid mine drainage: treatment of 
mine effluent. o r  prevention o r  abatement of the sulfide oxidation which is responsible 
for  acid mine drainage. 

This paper descr ibes  one phase of a basic study on the kinetics and mechanism 
of sulfide (pyrite) oxidation, a study which has provided information necessary to the 
analysis and evaluation of methods for abatement of acid mine drainage a t  i t s  source. 
This study was made to c lar i fy  the mechanism by which bacteria catalyze the oxi- 
dation of pyrite by using what i s  assumed to be a chemically analogous system. The 
regime of bacterial influence a r e  described in t e r m s  of conditions at the reaction site. 
Bacterial-enhanced oxidation ra tes  a r e  compared to  ra tes  in a chemical system and the 
independence of the two mechanisms demonstrated. 

Introduction: 

Quantitative data on kinetics of pyrite oxidation in a chemical sys tem a r e  avail- 
able. A general discussion of the thermodynamics and chemistry of pyrite oxidation 
was given by Clark (4 ) .  More quantitative kinetic studies on the effect of oxygen concen- 
t ra t ion (in vapor o r  liquid phase), water ,  and pH on the rate  of pyrite oxidation were 
given by Morth and Smith (ll), and Smith, Svanks, and Shumate (16). The latter paper 
a l so  described work on oxidation of pyrite by fe r r ic  ions, here  referred to a s  anaerobic 
oxidation. Where ra te  of oxidation is determined by the partial pressure of oxygen, the 
t e r m  aerobic oxidation i s  used. 

Earl ier  work by Garre l s  and Thompson (7) ,  who investigated the oxidation of 
pyrite by fe r r ic  sulfate solutions, showed the dependence of f e r r i d f e r r o u s  ratio on 
anaerobic oxidation ra te ,  and suggested that the rate-controlling mechanism i s  related 
to  adsorption of fgr r ic  and fe r rous  i ron on pyrite surface. 
the ra te  of oxidation h a s  chiefly a function of the oxidation-reduction potention (Eh) of 
solution and independent of the total i ron concentration. Over the range of Eh that 
could be examined by Garre l s  and Thompson their conclusions a r e  valid; however neither 
conclusion i s  basically correct. 

A number of publications (2, 3 ,  6 ,  12) have taken a geochemical approach to 
evaluating the effect of E , pH, iron concentration, etc. on mine drainage. Unfortunately 
the geochemists have codused  the kinetics of pyrite oxidation by using the Eh - pH 
stability diagrams to analyze pyritic systems.  F i r s t ,  phase equilibrium diagrams give 
little information regarding kinetics, other than *'go, no-go" limitations. But most 
se r ious  is the implication that the effluent water f r o m  a mine or  other pyritic system i s  
representative of the water in  contact with the reacting s i te  of pyrite. 
that the geochemists have grea t  difficulty explaining the source of oxygen or oxidizing 
agent f r o m  analysis of effluent water supports the conclusion (13, 15) that the vast 
majority of pyrite being oxidized i s  pyrite exposed to  a vapor phase. Only an adsorbed 
layer or thin film of water  a c t s  a s  the reaction medium. This adsorbed layer of water 
has very little relation t o  the effluent s t r e a m  from a pyritic sys tem such as a n  under- 
ground mine. The designation of aerobic- o r  anaerobic- controlled regimes i s  therefore 
not possible from analysis of effluent water. Relative oxidation ra tes  in natural systems 
a r e  determined by oxygen partial pressure ( aerobic ra te )  and f e r r i d f e r r o u s  ratio 

They also concluded that 

The very fact 

(anaerobic ra te)  at the site of the reaction. . 
A recent paper by Barnes and Romberger (3) discusses  the effect of bacteria in 
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pyrite oxidatio:; and confirms ear l ie r  statements (1G) that thc cheinical (noli-microbial) 
fe r rous  ion oxidation rate  by dissolved oxygen is negligibly slow. Dugail and Lundgren (5) 
report the energy supply for Ferrobacillus ferrooxiclans to be the oxidation of ferrous to 
f e r r i c  ions. Renlarkable increases  in pyrite oxidation rate  were noted (9, 10) when large 
quantities of these bacteria were added to the reaction system. 
c r e a s e  was reported (16) for anaerobic oxidation at  high ferr ic / ferrous ratio. 

Contact mechanism in oxidizing pyrite. 
through direct electron t ransfer  between the cell and pyrite on which the ce l l  i s  adsorhed. 
Indirect oxidation occurs by oxidation of pyrite by f e r r i c  ions, the ferr ic  ions being gener- 
ated by bacterial oxidation of fe r rous  ions in solution. 

in a biological system and observed no significant change in  ra te  until the bacteria had 
oxidized the irion in solution to 70 o r  80% fer r ic .  
primary importance although it does not rule out a significant contribution by direct oxi- 
dation. A comparison of anaerobic and bacterial ra tes  a s  a function of f e r r i d f e r r o u s  ratio 
in solution will indicate the relative r a t e s  of the two mechanisms. 

in biological systems and analogous chemical systems,  the following work was performed. 

- Exper imenta 1 Program: 

The same order  of in- 

Silverman (14) suggested that bacteria operate through both a "direct" and "indirect" 
Direct oxidation implies the oxidation of pyrite 

Bailey (1) followed the ra te  of pyrite oxidation 3s a function of fe r r ic  ion concentration 

This indicates "indireot" oxidation i s  of 

In order to provide the basic kinetic information needed to compare oxidation ra tes  

Equipment described by Smith, Svanks, and Shumate (16) was used €or  the anaerobic 
and combined aerobic-anaerobic runs. 
oxygen supply was added to'the titration vessel for  aerobic runs. The amount of make-up 
oxygen required to  maintain a constant sys tem pressure (including volume above perman- 
ganate burette) was used to determine aerobic oxidation rate .  

and found to require 14 moles of f e r r i c  ion, and three and one half moles of oxygen to 
oxidize one mole of pyrite (iron a s  ferrous) .  Rates a r e  thereby calculated in  t e r m s  of 
micromoles of pyrite oxidized per hour per g r a m  of pyrite, hased on oxygen consumed 
and f e r r i c  ions reduced. 

r ia l  f r o m  the Mc Daniels mine in the Middle Kittanning No. 6 coal  in Vinton County,Ohio 
and the other a "museum grade" sample of the same mesh s ize .  Data on the Sulfur Ball 
#2 sample of Ref. (16) i s  also presented. 

For  some a s  yet unknown reason, data on the museum grade pyrite could not be 
consistently reproduced. 

Consistent data were obtained on a se t  of runs,  f a r  example, a series of runs a t  
different ferr ic / ferrous rat ios ,  if operated continuously. But if the reactor  were shut 
down overnight, the ra te  the following day would often he higher o r  lower by 25 to  50% 
S u l f u r  ball material was much more predictahle, the rate  decreased slowly and regularly 
with reaction time. Over 25% of the original sample was consumed over the s e r i e s  of runs 
rcported. A l l  ra tes  were recalculated to  the same base rate; that of Run 23, the Rate vs. 
Concentration data se t  shown in Fig. 1. pH of all solutions varied between 0 . 2  and 0 .5 .  
The fe r r ic / fe r rous  ratio was calculated from the equation: EMF = 0.430 + 0.059 log (Fe+3{ 
Fe+2), a s  determined experimentally for  our system. 

In place of the nitrogen purge line, a metered 

Stoichiometry of both anaerobic and aerobic oxidation was checked experimentally 

'nvo different types of pyrite were used here: one a 48-70 mesh "sulfur ball" mate- 

n v o  consistent s e t s  of data for  the museum grade pyrite a r e  given in Tables 1 and 2 .  
Similar data for McDaniels Sulfur Ball sample a r e  given in Table 3 and graphically' 

in Fig. 2. 
Table 4. 

Treatment of Data: 

Results of the comhined aerobic-anaerobic oxidation runs a r e  summarized in 

A simple "dual site" adsorption model gives an equation that cor re la tes  experimental 
data within limits of experimental e r r o r .  

A S  one pss ih i l i ty ,  assumc a Fc (OH)++ complex is  adsorhed on two "reactive sites" 
of pyrite (tlual-sitc adsorption). Also assume ferrous ions (FeC+) compete for  these dual 
s i tes .  The activated complex formed by f e r r i c  ion adsorption is decomposed hy electron 
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t ransfer  f rom one of the react ive s i tes  to the fe r r ic  complex, forming an adsorbed ferrous 
ion, which i s  then desorbed. 

Using the Hougen-Watson (8) concepts for  calculating the rate  equation, the following 
rate  equation was derived: 

where: 
kQf = ra te  constant, electron t ransfer  reaction 
K = equilibrium constant, e lectron transfer 

K1 = adsorption equilibrium constant for  

K2 = adsorption equilibrium constant for 

Fe+2, Fe+3 = concentration of ferrous and 

reaction 

ferric ions 

ferrous ions 

ferric ions 

A t  high EMF'S, where the square root of the ferrous/ferr ic  ra t io  (Fe+2/Fe+3) is 
negligible, this  equation may be written: 

A plot of l/r vs. 1/ 

These data for  the three pyrite samples  shown in Tables 1, 3, and Table 2 of Ref. 

for  anaerobic oxidation a t  high EMF'S should give a 
straight line with a slope equal to l / k  and a n  intercept equal t o r n /  k. 

(16) a r e  plotted in Fig. 1. 
After k and K a r e  calculated from the slope and intercept, k' and can  be 

determined in the following manner: Assume that reaction r a t e  goes to zero  a s  EMF 

;:r;;Ze;.&JJ Fe+3 = 3.0). Then setting the numerator  of Equation 5 equal 

K2 can  be determined f r o m  one value of the Rate vs. EMF data where the fe r r ic /  
fe r rous  ra t io  is significant. 

The data presented in Ref. (16) f o r  Sulfur Ball #2 may be used to illustrate the 
calculation of the Rate Equation. 

F r o m  Fig. 1, slope of line for  Sulfur Ball #2 = 0.0061 and Intercept = 0.02, then: 
k =  1/0.0061= 165 
k' = 165/3 = 55 (E )' = Intercept x k = 3.3 

(Note: since d-' is  g t  negligible a t  EMF = 0.650, the intercept value 

= 3; k' = k/3. 

*From potentiostat measurements  of pyrite, these values appear reasonable in systems 
where the pH is below 1.0.  
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Of 3 . 3  illcludcs E t imes 6- . By tr ia l  and e r r o r .  K1 = 3. 3 - 70 x 0. 0137 = 
2 . 3 ,  when K2 i s  calculated from ra te  a t  EMF = 0.477. 
calculated using Fig. 1 and one point f r o m  Rate vs. EMF data is: 

Therefore thc ra te  equation, a s  

r =  165 - 55 dFe+2/Fe+3 

+ 2.3  + 70 \I- 1 

4- 

Table 5 compares calculated and experimental ra te  for these data. 
In like manner, the ra te  equations for  the experimental points given in Fig. 2 can be 

The solid lines on Fig. 2 are loci of the calculated ra tes  for  different total calculated. 
iron concentrations. Calculated and experimental ra tes  for  museum grade pyrite a r e  
compared in  Table 2. 

Interpretation of Data: 

The excellent correlation of experimental data by Equation 5 indicates that the form of 
the adsorption equation, if not the specific mechanism used to derive i t ,  is relevant. It 
appears  that the relative adsorption of ferrous and f e r r i c  ions is rate-determining in  
anaerobic oxidation. A comparison of adsorption equilibrium constants f o r  ferrous and 
ferric ion is surprising. F o r  sulfur ball pyrite the ratio of K2/K1 (ratio of adsorption 
equilibrium constants for ferrous and ferric ion, respectively) i s  900 f o r  Sulfur Ball #2, 
2500 for  Mc Daniels Sulfur Ball, and 45,000 for  Museum Grade pyrite. In other words, the 
relative adsorption of fe r rous  ions is much greater  than fe r r ic  for  a l l  types of pyrite. The 
selective adsorption of fe r rous  ions is particularly grea t  in museum grade pyrite -- over 
20 to 50 t imes greater  than the sulfur ball. It i s  a l so  interesting to note that the reactivity 
of the pyrite samples  i s  inversely related to  KZ/K1. The ra te  curves f o r  the three pyrite 
samples  a r e  compared in Fig. 3 

determined by ferrous/ferr ic  ratio, not Eh (EMF). A s  the Eh of solution is raised to the 
The data show that anaerobic ra tes  a r e  a function of total iron concentration, and a r e  

point where al l  iron is f e r r i c ,  the ra te  becomes constant. 
negligible effect on rate .  

reaction modes. The aerobic ra te  is not influenced by solution Eh o r  f e r r i d f e r r o u s  ratio, 
and the anaerobic ra te  i s  not changed by the partial pressure of oxygen. This leads to the 
conclusion that the "reactive s i tes"  for  the two oxidation mechanisms a r e  not the same. 

It i s  interesting to note that the increase in  oxidation rate ,  over the aerobic rate, is 
approximately the s a m e  for  samples  heavily inoculated with Ferrobacill us  ferrooxidans 
(9) and samples subject to anaerobic oxidation a t  high EMF'S. This observation, together 
with those of Silverman (14) and Bailey (1) leads to the conclusion that bacteria such a s  
Ferrobacill.  us ferrooxidans function to generate a high ferr ic / ferrous rat io  in  solution. 
The rate  of oxidation by ferric ions would then be the same in both a biological o r  chemical 
system, and determined by the f e r r i d f e r r o u s  rat io  and total i ron concentration. 

if data on oxygen concentration and f e r r i d f e r r o u s  a t  the reaction s i te  a r e  known. Aerobic 
and anaerobic ra tes  a r e  approximately the same,  a t  oxygen partial p ressures  of 21f&, when 
EMF = 0.450. This corresponds to a f e r r i d f e r r o u s  ratio of 2 . 2  o r  70'6 of iron ions in the 
f e r r i c  s ta te .  
fifth t o  one-tenth the aerobic ra te  in  a i r .  Only with microbial-enhance oxidation can fe r r ic /  
f e r r o u s  rat ios  this high he attained. 
than 0.3 (24'6 fe r r ic ) ,  and the partial pressure of oxygen i s  15 to 20% the system i s  in a n  
aerobic regime - i. e . ,  the oxidation rate  is  determined by the chemical aerobic mechanism. 
If oxygen vapor concentration i s  under 2'10 and 70% of the iron i s  in the f e r r i c  s ta te ,  the 
system is  in a anaerobic regime,  generated by microbial activity. 
that thc t e r m  "anaerobic" a s  used here  does not mean that the ultimate electron acceptor 

Further increase in  Eh has 

The combined aerobic-anaerobic oxidation runs show the independence of the two 

, 

These data provide a basis for  defining the reaction regime, i. e. aerobic o r  anaerobic, 

At an EMF of 0.40 ,  where 24% of iron is  f e r r i c ,  the anaerobic ra te  is one- 

In other words, if the f e r r i d f e r r o u s  ratio is.less 

It must be emphasized 
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i s  not oxygen. 
:i fe r r ic  ion. 
s i tes  a r e  exposed to vapor phase. 

"Anaerobic" implies only that the electron acceptor a t  the reaction site is 
These descriptions a r e  applicable to natural systems where active osidatim 

Pyrite immersed in  normal p o u n d  wuter i s  not osidizecl. 

Summarz: 

Anaerobic oxidation r a t e  of pyrite i s  determined by the ferr ic / ferrous ratio and 
tota 1 iron concentration in solution. 
on pyrite is  much grea te r  than f e r r i c  ions. At least f G r  the three  different pyrite samples 
examined, the reactivity i s  inversely related to the ratio of the adsorption constants, 
ferrous-to-ferric. 

Aerobic oxidation ra te  i s  a function of oxygen concentration a t  the reaction site. 
not affected by the presence of e i ther  f e r r i c  o r  ferrous ions nor the total iron concentration. 
Since the two rates  a r e  a lso independent. it appears  that different "reactive sites" a r e  
involved in aerobic and anaerobic oxidation. 

70% of the iron in solution is  in  the fe r r ic  s ta te  and the solution i s  in equilibrium with 
a i r  of 21% oxygen. Since such a high f e r r i d f e r r o u s  ratio is  only possible in a microbial 
system in a natural environment, oxidation by fe r r ic  ions (anaerobic oxidation) can be 
significant only in bacteria-catalyzed systems.  The oxidation regime can be determined 
f rom oxygen and i ron concentrations and the ferr ic / ferrous ratio a t  the reactive s i te .  
Note that the effluent water c a n  not be used to determine these factors  since this water is 
in no way representative of the water in  contact with the "reactive s i tes .  

f e r r i d f e r r o u s  ratio a t  the reaction s i te .  
of ra tes  (anaerobic and aerobic)  differ by a factor of 5 .  

of pyrite oxidation (per unit surface a rea  exposed) can be determined in t e r m s  of the 
equations f o r  anaerbbic and aerobic oxidation. 

with a relevant model of a pyritic system e. g. drift mine, gob pile, spoil bank, e t c . ,  
enables one to evaluate abatement measures  o r  predict acid formation that will develop 
under various conditions. 
basic chemical kinetics a r e  adequately described. 

The adsorption equilibrium constant for  ferrous ions 

It i s  

The aerobic and anaerobic r a t e s  a r e  approximately equal for sulfur ball pyrite when 

Figure 4 graphically descr ibes  the regimes in terms of oxygen concentration and 
The boundry lines were drawn where the ratio 

Since aerobic and anaerobic oxidation ra tes  a r e  independent and additive, the rate  

This type of information presented here  furnishes the basic data which, combined 

The kinetics of the total sys tem can be derived only if the 
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TABLE 1 TAbLE 2 

h 

3.125 
0.253 
2.523 
1.33 
2.30 
L . 
:' ..;GI 

1". ;v 

- _  
Z L . 1  

10.' 
!L: . p 

-: .'!5 
5.3 
3.73 
2 .:r4 
2.3' 

1.21 
0.  Po 
3.c.3 
3.1;5 
52.34 
0.25 
0.20 
0.195 

;I= + 1 . b  + 300 vw 
~ e + 3  

1 I i j t s :  "r" (Rate)  i n  u n i t s  .,f micrJgram-rnolc FeS;, sx i r l ize t l  p e r  hour  p e r  gram 
.f sanple. 

t 
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r (@/l i ter)  
19.3 5-0 
18.7 3-85 

TABLE3 - 

Rate vs .  IrJn CmcentratiDn 
E3F. Sett ing  = O.c.50; pH = 0.5 

Mc Daniels Sulfur Ball 

Run 23 I Run 50 
Fe Csnc. 1 Fe Conc. 

r (@/liter) 
19.1 4.3 
14.2 2.26 

/' 

14.3 2.15 
10.9 1-10 
E.5 0-59 - 

5.3 0.183 
6.5 0.31 

11.3 1.26 
9.1 0.675 
4.8 0.193 

8.2 0.54 
11.7 1.28 

TABLE 4 

Combined Aerobic and Anaerobic Oxidation 

Run ND. 
31 
33 
34 
35 
38 
41 
45 

Iron Conc. 
(gm/liter) 

- 
1.00 

1.00 
0.40 
0.20 
0.20 

- 

by $ @  

3.6 
3.5 
3.4 
3.5 
3.4 
3.5 

Rat e T I  

*otic only) 
4.5 
- (aerobic only) ,r 
4.4 
3.5 
5.1 
5-0 



75 

Rate vs. BfF, Sulfir Ball #2, Ref. 16 
Iron Concentration = 1 @n./liter, pH = 0.2 

EMF 

0.60 
0.65 

0.55 
0.50 
0-477 
0.460 
0.430 

.r 
F 

12.5 

6.1 
3.6 
2.1 
0.56 

11 

r calc . * 
14 

12.3 
9.2 
5.4 
3 -6 
2 =7 
1.3 

I 

\ 

, 
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